

Subject: Biology

Year Group: 12

	Autumn	Spring	Summer
	Bridging Course: Skills and Knowledge	Unit 3: Organisms exchange	Unit 3 (continued): Transport in plants -
	from GCSE	substances with their environments -	Understand mass transport in plants,
		Know the relationship between surface	including cohesion-tension theory of
	Unit 1: Biological molecules Monomers	area to volume ratio and metabolic	water transport in xylem and mass flow
	and polymers -Understand that a	rateUnderstand adaptations of gas	hypothesis for transporting organic
	condensation reaction joins two	exchange mechanisms in insects, fish,	substances in phloem Explain
	molecules together with the formation of	mammals and plantsKnow the gross	experimental evidence supporting
	a chemical bond and the elimination of	structure of the human gas exchange	mass flow theory using tracers and
	waterUnderstand that a hydrolysis	systemKnow how carbohydrases,	ringing experiments.
	reaction breaks a chemical bond	proteases and lipases hydrolyse large	
	between two molecules and involves the	biological molecules to smaller	Unit 4 (continued): Biodiversity -
	addition of a water molecule.	molecules for absorption in digestion	Required practical 6: aseptic
	Carbohydrates -Describe that	Understand the mechanisms of	techniques and antimicrobials Species
	monosaccharides are the monomers from	absorption and the role of bile salts	& taxonomy -Describe what a species
	which larger carbohydrates are made	and micelles for lipidsKnow the role	is, how they are named and explain
	Know that glucose has two isomers, a-	of haemoglobin in the loading,	their courtship -Explain the principles of
	glucose and β -glucose, and be able to	transporting and unloading of oxygen.	classification -Explain how classification
Content	recognise and draw the structure of these.	-Explain oxygen's dissociation curve	is related to evolution -Describe what
	-Name common monosaccharides and	and the effects of carbon dioxide	species diversity is and calculate the
	disaccharides formed from these	concentration (Bohr effect)Know the	species diversity index -Understand the
	Describe the basic structure and functions	structure and function of the human	classification system and be able to
	of cellulose, starch and glycogen-	heart and blood vessels, including	organise organisms into their groups by
	Describe the biochemical tests using	volume and pressure changes brought	their characteristics -Describe what
	Benedict's solution for reducing sugars	about by valve movements in the	phylogeny is and use it to explain
	and non-reducing sugars and	cardiac cycle. Unit 4: Genetic	relationships between organisms -
	iodine/potassium iodide for starch. Lipids -	information, variation and relationships	Describe what variation is, methods of
	Identify the two groups of lipid,	between organisms DNA genes and	sampling, how it is measured and
	triglycerides and phospholipids and be	protein synthesis- DNA & chromosomes	calculate mean & standard deviation -
	able to describe their structure and the	-Distinguish between DNA in eukaryotic	Species diversity index -Explain the use
	differences between themDescribe the	organisms and prokaryotic cells	of techniques in investigating diversity -
	difference between saturated and	Describe the nature of a gene -	Explain the impact of human activities
	unsaturated R-groups of fatty acids	Describe the structure of a	on the environment as well as solutions
	Describe the emulsion test for lipids	chromosome -Explain how genes are	to these issues such as conservation
	Proteins -Know that proteins have a	arranged on a DNA molecule -	Calculating standard deviation
	variety of functions within all living	Describe the nature of homologous	

Autumn	Spring	Summer
organismsKnow and describe the	chromosomes -Explain what is meant	Unit 5: Energy transfer in and between
relationship between primary, secondary,	by an allele -Explain how genes code	organisms. Energy and ecosystems
tertiary and quaternary protein structures	for polypeptides -Describe the	Know how sugars synthesised by plants
and protein functionIdentify that amino	structure of RNA, mRNA & tRNA -	are used as respiratory substrates or to
acids are the monomers from which	Explain the processes of transcription &	make other biological molecules,
proteins are made. Be able to draw the	translation -Describe what a mutation	forming biomass. Explain production
general structure of an amino acid and	is & explain the effect of these	using the terms GPP, NPP and
identify the R groupDescribe that two	mutations -Explain what genetic	respiratory losses for plants and N, I, F
amino acids form a dipeptide through a	diversity is, factors that influence it and	and R for consumers. Understand how
condensation reactionKnow the role of	how it effects natural selection -	energy is available for growth and
hydrogen bonds, ionic bonds and	Describe what selection is, factors that	reproduction in organisms, or available
disulfide bridges in the structure of protein.	exert selection pressure and explain	to other trophic levels in the ecosystem
-Give a description of the biuret test for	stabilising and directional selection	through food webs.
proteins and the colour change expected		How productivity is affected by
with a positive resultDescribe how		farming practices designed to
proteins are formedExplain that enzymes		increase the efficiency of energy
catalyse reactions by lowering the		transfer. Understand the role of
activation energyDescribe how enzymes		microorganisms in recycling chemical
are specific and so only catalyse certain		elements such as phosphorus and
reactionsName factors that can affect		nitrogen. Describe the processes of
the rate of enzyme activity and how these		saprobiotic decomposition,
do soIdentify different models of enzyme		ammonification, nitrification, nitrogen
action and how these describe enzyme		fixation and denitrification. How
function. Nucleic acids are important		natural and artificial fertilisers to
information-carrying molecules -Know the		replace the nitrates and phosphates
components and structures of DNA and		lost by harvesting plants and removing
RNA -Identify the bonds that hold two		livestock. The environmental issues
polynucleotide chains together as a DNA		arising from the use of fertilisers
double helix -Describe how DNA		including leaching and eutrophication.
replication occurs and name the enzymes		Unit 7: Genetics, populations, evolution
involved in the processEvaluate the		and ecosystems. Investigating
work of scientists in validating the Watson-		populations Fieldwork RP -Understand
Crick model of DNA replication		what makes an ecosystem and how
		the populations in these ecosystems
AIP -Know the structure of ATP and its		can be attected by biotic and abiotic
importance as a source of immediate		tactorsKnow how succession occurs
energy within cellsDescribe how ATP is		trom colonisation of a pioneer species
hydrolysed and resynthesized. Water -		to a climax community.

	Autumn	Spring	Summer
	Explain that water is an important biological molecule due to its many properties. Name its different properties and examples of where this is important in organisms. Inorganic ions -Describe the role of inorganic ions in organisms. Namely hydrogen ions, sodium ions and phosphate ions.		
	Unit 2: Cells Cell structure; -Understand the ultrastucture of animal and plant cells, prokaryotes and viruses -Explain mitosis and the cell cycle -Understand how cancer arises -Using and calibrating a microscope, magnification calculations and measuring cells -Explain the life cycles of bacteria and viruses Transport across membranes; -Understand past and present models of the cell membrane - Know how molecules can move or are transported across membranes - Understand water potential Cell recognition and the immune system; - How we acquire immunity and cells of the immune system -Understand antibodies and vaccinations -Know how HIV develops and how to identify it using ELISA		
Skills	 Unit 1: -Required Practical 1: Design and carry out an investigation into the effect of a named variable on the rate of an enzyme-controlled reaction. Unit 2: -Know how to use an eyepiece graticule and stage micrometer to calibrate a microscopeDesign and carry out investigations into cell fractionation to look at cell ultrastrucure. Required 	Unit 3: -Dissect gas exchange systems of insects, fish and mammalian lungs Use visking tubing models to investigate the absorption of the products of digestionRequired practical 5: Dissection of an animal organ within the mass transport system.	 Unit 3: -Use a potometer to investigate named variables on rates of transpirationInterpret evidence from tracer and ringing experiments and to evaluate the evidence for and against the mass flow hypothesis. Unit 4: -Know how to calculate the median, mode and meanInvestigate the effect of antibiotics on microbes

	Autumn	Spring	Summer
	practical Cell fractionation of plant tissue to separate starch and catalase. Design and carry out investigations to stain root cells to calculate mitotic index and produce a calibration curveKnow how to plot and interpret a calibration graph to calculate cell permeability and water potential. Required practical Preparation of stained cells for calculating mitotic index Required practical The production of a dilution series to produce a calibration curve with which to identify and calculate the water potential of a plant tissue Required practical Investigation into the effect of a named variable on the permeability of cell- surface membranes.	Unit 4: -Know how to work out the impact of the change of an amino acid sequence on the protein formed.	by making their own plates and analysing the results -Calculating the species biodiversity index Unit 5 Students manipulate data to calculate gross primary production, net productivity of producers or consumers and the efficiency of energy transfers within ecosystems, and derive the appropriate units
Key questions	 Unit 1: Can you explain that all living things have a similar biochemical basis? From which smaller units are larger molecules made? How are polymers formed from monomers? Which conditions can cause changes to the activity of an enzyme? Why is water considered the most important biological molecule? How is DNA replicated? Unit 2: What is the ultrastucture of the cell and what is the purpose of each organelle? How can we measure a cell accurately using a light microscope? How does a prokaryote differ from a eukaryote? How do different molecules pass across cell membranes? What is the immune system and how does it work? What are antibodies and how do they contribute to immunity? 	 Unit 3: How does surface area to volume ratio determine the need for specialised exchange surfaces? How are surfaces adapted for gas exchange? How does digestion of large biological molecules allow absorption into the circulatory system? How does the heart control volume, pressure and unidirectional flow of blood through blood vessels? Unit 4: What is the structure of a chromosome? How do the structures of mRNA, tRNA and rRNA differ? How does meiosis lead to variation within a species? Explain what happens in the process of protein synthesis including transcription, splicing and translation. What are the effects of the different types of mutations? 	 Unit 3: How is water transported from plant roots to leaves in xylem? How is sugar made in the leaves translocated to all parts of the plant in phloem vessels? Unit 4: What is genetic diversity? How do we organise organisms? How can we use phylogeny to demonstrate evolution? Describe the three domains and explain why the classification system changed. Distinguish between directional and stabilising selection. How has agriculture impacted species diversity? Unit 5 How is energy from sunlight captured by plants passed on to other organisms in the food chain? Why is energy lost in this process and how can efficiency be improved? How are

	Autumn	Spring	Summer
			the nitrate and phosphate ions recycled between organic and inorganic forms? What are the implications of using natural and artificial fertilisers? Unit 7 : What makes up an ecosystem? How can populations within an
			abiotic factors? How can population sizes be estimated?
Assessment	Kerboodle Retrieval Questions Essay Practice Questions Exampro Past Exam Questions Seneca Learning Assessments		
Literacy/ Numeracy/ SMSC/ Character	Unit 1: Literacy -Reading and understanding technical language from biological review papers surrounding the important of biological molecules. Numeracy -Calculate the rate of reaction in an enzyme controlled reaction Unit 2: Literacy Reading and understanding technical language from biological review papers surrounding current issues in medicine. Numeracy Use given data to calculate the size of different cells. Graphical representation of information including, calibration curves and extrapolating data and negative values of water potential. SMSC Ethical implications of understanding transmission of disease, including HIV. Understanding that evidence is not always proven to be correct when thinking about scientific research- the MMR debate.	Unit 3: Numeracy Calculate surface area: volume ratios of different shapes from cell dimensions. Calculations involving pulmonary ventilation rate (PVR), requiring them to change the subject of the equation: PV R = tidal volume × breathing rateChange the subject of the equation: CO = stroke volume × heart rate to calculate unknown variables. SMSC -Interpret information relating to effects of lung disease on gas exchangeRecognise correlations and causal relationshipsInterpret data relating to the effects of pollution and smoking on lung disease. Analyse and interpret data associated with specific risk factors and the incidence of cardiovascular disease -Evaluate conflicting evidence associated with risk factors affecting cardiovascular disease	Numeracy Calculate net primary productivity using NPP = GPP – R Calculate net productivity using N = I – F +R Unit 7: Literacy Evaluate evidence concerning issues relating to the conservation of species and habitats and consider conflicting evidence. Numeracy Use given data to calculate the size of a population. Understand the principles of sampling as applied to scientific data. Understand the terms mean, median and mode. Select and use a statistical test. Understand measures of dispersion, including standard deviation and range. SMSC Show understanding of the need to manage the conflict between human needs and conservation in order to maintain the sustainability of natural resources.

Autumn	Spring	Summer
Character Tolerance - consider alternative views on the use antibodies and vaccinations. Confidence, resilience - carry out complex practical steps to fractionate plant tissue, and cell membrane permeability.	Unit 4: Literacy Evaluate the effect of humans on the environment Numeracy Calculating possible combinations following meiosis (2n2) 2 Interpreting graphs of stabilising and directional selection Calculating the species biodiversity index Calculating standard deviation and interpreting graphs standard deviation SMSC Diseases linked to genetic mutations can have a big impact on peoples lives or possibly be life limiting. Students may have encountered these. Seeing both sides of the arguments for the methods used in agriculture VS conservation of biodiversity Conservation in terms of zoos can be controversial as its not 'natural' Some students may find discussions about DNA and genetics difficult due to their family history (e.g. family separation, adoption, fostering) Character Resilience needed when calculating standard deviation and species diversity index as well as interpretation of the results of these Tolerance for others views on genetics	Summer