

Curriculum Map

Subject: Chemistry

Year Group: 12

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Autumn 1/Autumn 2 Bridging Course: Skills and Knowledge from GCSE Physical Chemistry 1: Atomic Structure Fundamental particles mass pos	Autumn 2 Physical Chemistry 1: Amount of Substance RAM/RFM, the mole, ideal gas eq, EF/MF equations, titration cales	Spring 1 Physical Chemistry 1: Bonding Ionic/covalent/metallic bonding and properties shapes of molecules/ions bond polarity intermolecular forces	Spring 2 Physical Chemistry 1: Kinetics collision theory maxwell boltzman effect of temp /conc Pressure on rate	Summer 1 Physical Chemistry 1: Oxidation, Reduction and Redox Reactions Oxidation States, Half Equations Organic Chemistry 1:	Summer 2 Inorganic Chemistry 1: Periodicity Period 3 elements Group 2 Physical and Chemical Properties Group 7
Content	and isotopes, TOF mass spec, electron config Organic Chemistry 1: Introduction to Organic Chemistry Nomenclature, reaction mechanisms, isomerism	yield, atom economy Organic Chemistry 1: Alkanes Fractional distillation, cracking, combustion, chlorination	Enthalpy change calorimetry, application of Hess's law, bond enthalpies Organic Chemistry 1: Halogenoalkanes nucleophilic substitution, elimination, ozone depletion	Equilibria Le Chatelier's Principle Kc Organic Chemistry 1: Alkenes Structure, bonding, reactivity, addition	Organic Analysis Identification of functional groups Infra-Red Spectroscopy Mass Spectrometry	Chemical Reactions of Halogens Reactions of Halide Ions Uses of Chlorine
				addition polymerisation Alcohols Nomenclature, structure, physical properties, Production, oxidation elimination,		
Skills	ATOMIC STRUCTURE - Report calculations to an appropriate	AMOUNT OF SUBSTANCE RAM/RFM -Report	BONDING -Find the type of structure of unknowns by	KINETICSbe able to use collision theory to	ORGANIC ANALYSIS -Carry out test-tube	PERIODICITY Understand and explain the trends

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	number of	calculations to	experiment (eg to test	describe how	reactions in the	in the properties
	significant figures,	an appropriate	solubility, conductivity	T,C,P and SA	specification to	of elements as
	given raw data	number of	and ease of melting)	affect reaction	distinguish	you move across
	quoted to varying	significant figures,	Deduce the shape	rate define	alcohols,	Period 3 of the
	numbers of	given raw data	according to valence	activation energy	aldehydes,	Periodic Table
	significant figures	quoted to	shell electron pair	and draw energy	alkenes and	Explain why the
	Calculate weighted	varying numbers	repulsion (VSEPR)	level diagrams	carboxylic acids.	increase in
	means e.g.	of significant	principle when given	which incl Ea	-Use precise	ionisation
	calculation of an	figures	familiar and unfamiliar	know how to	atomic masses	energies across a
	atomic mass based	Understand that	examples of species	draw M-B	and the precise	period is not
	on supplied isotopic	calculated results	Deflect jets of various	distribution curve	molecular mass	regular
	abundances	can only be	liquids from burettes to	and use it to	to determine the	Describe how
	Interpret and	reported to the	investigate the	explain effect of T	molecular	euccessive
	analyse spectra	limits of the least	presence of different	on rate - Know	formula of a	ionisation
	Carry out	accurate	types and relative size	how catalysts	compoundUse	energies explain
	calculations using	measurement	of intermolecular	work, examples	data in the	electron
	numbers in standard	Carry out	forces	and how to use	Chemistry Data	arrangements
	and ordinary form	calculations		reaction profiles	Sheet or Booklet	
	e.g. using the	using numbers in	ENERGETICS - describe	for catalysed	to suggest	
	Avogadro constant.	standard and	exo and endo thermic	reactions.	possible	GROUP 2
	-Carry out	ordinary form	reactions -define		structures for	ELEMENTS Test the
	calculations using	e.g. using the	enthalpy and carry out	CHEMICAL	moleculesUse	reactions of Mg-
	the Avogadro	Avogadro	simple calorimetry	EQUILIBRIA -	infrared spectra	Ba with water and
	constant	constantCarry	PSA9 -Use q=mcDT to	Estimate the	and the	Mg with steam
		out calculations	calc enthalpy change	effect of	Chemistry Data	and record their
	INTRO TO ORGANIC	using the	-Define Hess's law -be	changing	Sheet or Booklet	resultsTest the
	CHEMDraw further	Avogadro	able to use HL to calc	experimental	to identify	solubility of Group
	isomers from a given	constantFind	DHf and DHc -Use	parameters on a	particular bonds,	2 hydroxides by
	structure of one	the Mr of a	bond enthalpies to	measurable	and therefore	mixing solutions of
	isomerIdentity	volatile liquid	calc energy changes	value eg how the	tunctional	soluble Group 2
	isomers from various	Understand that		value of Kc	groups, and also	salts with sodium
	representations -	the correct units	HALOALKANES -Follow	would change	to identify	hydroxide and
	Understand the	need to be in pV	instructions when	with	impurifies.	record their
	origin of E-Z	= nRICarry out	carrying out test-	temperature,		resultslest the
	isomerismDraw	calculations with	tupenyarolysis of	given different	KEDOX -Work out	solubility of Group
	different forms of	the ideal gas	halogenoalkanes to	specified	the oxidation	2 sultates by
1	Isomers	equation,	show their relative rates	conditions	state of an	mixing solutions of

Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	including	of reactionPrepare a	Report	element in a	soluble Group 2
	rearranging the	chloroalkane, purifying	calculations to	compound or ion	salts with sulfuric
	ideal gas	the product using a	an appropriate	from the formula.	acid and record
	equation to find	separating funnel and	number of	-Write half-	their resultsTest
	unknown	distillation	significant figures,	equations	for sulfate ions
	quantitiesFind		given raw data	identifying the	using acidified
	the empirical		quoted to	oxidation and	barium chloride
	formula of a		varying numbers	reduction	and record their
	metal oxide		of significant	processes in	resultsExplain
	Find the		figures	redox reactions	the trends in
	concentration of		Understand that	Combine half-	atomic radius
	ethanoic acid in		calculated results	equations to give	and first ionisation
	vinegar -Find the		can only be	an overall redox	energyExplain
	mass of calcium		reported to the	equation	the melting point
	carbonate in an		limits of the least		of the elements in
	indigestion tablet		accurate		terms of their
	-Find the Mr of		measurement		structure and
	MHCO3 -Find the		Calculate the		bondingExplain
	Mr of succinic		concentration of		why BaCl2
	acid -Find the		a reagent at		solution is used to
	mass of aspirin in		equilibrium		test for sulfate
	an aspirin tablet -		Calculate the		ions and why it is
	Find the yield for		value of an		acidified.
	the conversion of		equilibrium		
	magnesium to		constant Kc -		THE HALOGENS -
	magnesium		Determine the		Carry out test-
	oxide -Find the		equilibrium		tubereactions of
	Mr of a hydrafed		constant, Kc, for		solutions of the
	salt (eg		the reaction of		halogens (Cl2,
	magnesium		ethanol with		Br2, I2) with
	sultate) by		ethanoic acid in		solutions
	neating to		the presence of		containing their
	constant mass		a strong acid		nalide ions (eg
	Find the		catalyst to ethyl		KCI, KBr, KI)
	percentage		etnanoate.		Kecord
	conversion of a				observations from
	Group 2				reactions of NaCl,

Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	carbonate to its		ALKENES -be able		NaBr and Nal with
	oxide by heat		to name them		concentrated
	Determine the		-be able to		sulfuric acid
	number of moles		recognise		Carry out tests for
	of water of		geometric		halide ions using
	crystallisation in a		isomerism -use		acidified silver
	hydrated salt by		CIP rules to name		nitrate, including
	titration		isomers -be able		the use of
	Construct and/or		to recall		ammonia to
	balance		reactions of		distinguish the
	equations using		alkenes with		silver halides
	ratiosCalculate		HHal,hal,c H2SO4		formedExplain
	percentage		-be able to write		the trend in
	yields and atom		these		electronegativity -
	economies of		mechanisms EA -		Explain the trend
	reactionsSelect		Write equations		in the boiling
	appropriate		for addition		point of the
	titration data (ie		polymerisation		elements in terms
	identify outliers)		and id repeating		of their structure
	in order to		unitsrecall issues		and bonding
	calculate mean		wrt disposal and		explain why silver
	titresDetermine		recycling		nitrate solution is
	uncertainty when		ALCOHOLS -be		used to identify
	two burette		able to name		halide ions, the
	readings are		them -be able to		silver nitrate
	used to calculate		classify alcohols		solution is
	a titre value.		and recognise		acidified and
			these		ammonia solution
	ALKANES -		classifications -		is addedCarry
	Fractional		know 2 ways to		out simple test-
	distillation of a		produce ethanol		tube reactions to
			and to carry out		identity: cations –
	substitute		termentation -		Group 2, NH4 +
			know and recall		anions – Group /
					(naliae ions), OH-
			aenyaration of		, CO3 2-, SO4 2
			aicohois -Know		

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
				the reactants,		
				conditions and		
				products for the		
				oxidation of		
				alcohols -be able		
				to draw		
				distillation and		
				reflux apparatus.		
	What is the	How can we use	What is the difference	What influences	What are redox	What are the
	evidence for sub-	the idea of the	between chemical	the rate of a	reactions? How	properties of the
	atomic particles?	mole in chemical	bonds and	chemical	can they be	elements in
	How can we	reactions and	intermolecular forces?	reaction? How	explained using	Period 3 of the
	measure the mass	calculations to	How do they all work?	can we use the	electron	Periodic Table?
	of atoms?	determine		Maxwell	transfers? What	How can we
	How was the more	amount of	How are these forces	Boltzmann	are oxidation	explain these
	sophisticated model	substance?	responsible for	distribution to	states and why	properties using
	of electron		properties of solids,	show what	are they a useful	concepts
	arrangement using	How can we	liquids and gases?	fraction of	concept in	developed earlier
	ideas about orbitals	determine the		molecules have	chemistry?	on in the course
	rather than orbits	yield of a	How do electrons	enough energy		about bonding
	developed?	reaction?	contribute to the	to react at any	How can we use	and atoms?
			shape of molecules	given	a mass	
Key questions	What are the	How can we use	and ions?	temperature?	spectrometer to	What are the
	different ways we	balanced		How do catalysts	determine the	properties of
	can represent	equations to	What is enthalpy and	work?	relative	Group 2
	carbon	describe the	how is it related to		molecular mass	elements? How
	compounds?	efficiency of	exothermic and	How can we	and the formula	can we use ideas
		chemical	endothermic	influence a	of organic	about electron
	How does the	processes?	reactions?	dynamic	compounds?	arrangements to
	IUPAC naming			equilibrium to		understand
	system work?	How do the	How can we measure	obtain more	What is infrared	bonding in
		inaustrial	enthalpy changes?	product?		compounds of
	what alterent types	processes			and now can if	group 2
	or isomers are there		How can we use bond	How are alcohols	De Used TO	elements?
	in organic	aistiliation and	the eventional succession of	produced? What		
	cnemistry?	cracking enable	Theoretical enthalpy	are their physical	tunctional groups	what are the
		us to get usetul	cnanges?			properties of

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		products from crude oil? What are the chemical and physical properties of alkanes?	How are halogenoalkanes made? What are their physical and chemical properties? How have halogenoalkanes damaged the ozone layer, and what has been done to solve the problem?	and chemical properties? How are alkenes produced? What are their physical and chemical properties?	in organic compounds?	group 7 elements? How can we explain trends in their reactivity using electronic structure? How can we apply ideas about oxidation states and redox reactions when investigating the halogens and their compounds?
Assessment	Transition Test Topic Tests	Topic Tests PPE	Topic Tests	Topic Tests	Topic Tests PPE	Topic Tests End of Year Exam
Literacy/ Numeracy/ SMSC/ Character	Algebra mathematical computation geometry handling data, CFC's and debating environmental issues, resilience when attempting difficult mathematical questions	Algebra mathematical computation geometry handling data, explaining in detail fractional distillation and cracking, Cfc's and debating environmental issues resilience when attempting difficult amount of substance questions	Algebra mathematical computation geometry handling data explaining environmental issues resilience when attempting difficult amount of substance questions	Algebra mathematical computation geometry handling data explaining and debating environmental issues resilience when attempting difficult amount of substance questions	Algebra mathematical computation geometry handling data, debating environmental issues resilience when attempting difficult amount of substance questions	Algebra mathematical computation geometry handling data explaining trends in periodicity, debating environmental issues resilience when attempting difficult amount of substance questions