

Curriculum Map

Subject: Chemistry
Year Group: 13

	Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1
	ISOMERISM OPTICAL	CARBOXYLIC ACIDS	AROMATIC structure	ORGANIC SYNTHESIS	Revision in
	Concept of chirality,	AND DERIVATIVES	and stability of	using prior reactions	preparation for
	polarimeter and	naming ester	benzene ring	to create synthetic	public exams
	racemates	formation and	electrophilic	routes	
		hydroylsis uses of	substitution reactions-		
	ALDEHYDES AND	esters-biodiesel	nitration and	NMR Carbon 13 and	
	KETONES naming them	acylation	acylation	H NMR interpretation	
	nuc addition reactions-	reactionsacyllchlorides		of spectra	
	HCN distinguishing	and acid anhydrides	AMINES preparation-		
	aldehydes and ketones-	reacting with	red of nitriles phenyl	CHROMATOGRAPHY	
	tollens and fehlings tests	nucleophiles(amines,	amine amides.	TLC/column /gas	
	oxidation of carbonyls	ammonia hydroxide		calculating Rf values	
	reduction of carbonyls	water)	POLYMERS		
			condensation	TRANSITION METALS	
	THERMODYNAMICS born -	ELECTROCHEMISTRY	polyamides/esters	General properties,	
	haber cycle Gibbs free	the electrochemical	repeating units mpts	complex formation,	
Content	energy	series	related to IMF	shape of complex	
		Predicting the	4.4.415.10.4.015.0	ions.	
	RATE EQUATIONS rate	direction of redox	AMINO ACIDS,	Coloured ions,	
	expression and orders the	reactions	PROTEINS AND DNA	variable oxidation	
	rate equation rate	Electrochemical Cells	zwitter ions formation	states.	
	determine	A CIDO DACEO DIJETEDO	of polypeptides	Catalysts.	
	ng step	ACIDS, BASES, BUFFERS	enzymes structure of DNA action of anti-		
	EQUILIBRIUM CONSTANT	Defining an acid pH scale		REACTIONS OF IONS IN AQ SOLUTIONS	
		Weak acids and bases	cancer drugs		
	Kp Kp, describing equilibrium	Choosing indicators	INORGANIC	Reactions of aq ions with alkali, carbonate	
	constant in terms of	for titrations	CHEMISTRY	and ammonia	
	partial pressures	Buffer solutions	PERIODICITY	ligand substitution	
	Partial pressures	POLICE SOLUTIONS	Reactions of Period 3	reactions	
			elements	TOGOTIONS	
			Oxides of elements in		
			period 3		
1			helion 2		

	Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1
			Acid/base nature of		
			period 3 oxides		
	OPTICAL ISOMERISM - TO	CARBOXYLIC ACIDS	AROMATIC -use	ORGANIC SYNTHESIS -	Exam technique
	recognise the presence	AND DERIVATIVES	thermodynamic data	know the reactants	practise using past
	of a chiral centre in a	practical to observe	to describe stability of	and conditions for	paper questions
	given structure in 2D or	reactions of ethanoyl	benzene delocalised	organic reactions	
	3D formsTo draw the 3D	chloride with variety of	ring structure over	and put them	
	representation of chiral	nucleophiles	kekule structure -	together to make	
	centres in various		describe the	common synthetic	
	species.	ELECTROCHEMISTRY -	mechanism of	routes	
		know what a half cell	electrophilic addition		
	ALDEHYDES AND KETONES	is and connect these		NMR -to know how to	
	-carry out test tube	together to create	AMINES describe the	interpret c 13 and H 1	
	reactions to distinguish	voltage	mechanism and	NMR spectra using	
	aldehydes and ketones		reactions of amines	data sheet info -	
		ACID -BASE EQUILIBRIA	as nucleophiles	understand splitting	
	THERMODYNAMICS -be	-understand and use		patterns for H-1	
	able to perform	log10 in pH calcs -do	POLYMERS -be able	spectra	
	calculations of an	students know how to	to devise repeating		
Skills	enthalpy change using	-Carry out pH CALCS	units -be able to	CHROMATOGRAPHY -	
	these BornHaber cycles	for strong acids -	recognise	Use thin-layer	
	Rearrange the equation	calculate conc to pH	polyesters/amides -	chromatography to	
	$\Delta G = \Delta H - T\Delta S$ to find	and vice versa -state	observe demo of	identify analgesics	
	unknown values	pH to 2 dp -	nylon being made -	Calculate Rf values	
	Determine ΔS and ΔH	understand standard	be able to explain	from a	
	from a graph of ΔG	form as applied to Kw	mpt wrt IMF between	chromatogram	
	versus TCalculate	-Calc Ph of strong	polymers	Compare retention	
	entropy changes from	base Calc pH of WA		times and Rf values	
	absolute entropy value -	by measuring pH at	AMINO ACIDS	with standards to	
	Use the relationship $\Delta G =$	half neutralisation -plot	PROTEINS AND DNA -	identify different	
	ΔH – $T\Delta S$ to determine	pH curves -prepare	be able to determine	substances	
	how ΔG varies with	and test a buffer soln	structures in different		
	temperatureUse the		pH solns - determine	TRANSITION METALS -	
	relationship $\Delta G = \Delta H -$		repeat unit for	carry out test tube	
	$T\Delta S$ to determine the		polypeptides - know	reactions of	
	temperature at which a		the structure of DNA -	complexes with	
			know how to join	variety of ligands to	

Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1
reaction becomes		base pairs with the	compare substitution	
feasible.		rest of DNA molecule	rates -Carry out test	
DATE FOUNTIONS I we say		DEDICE 2 AND THEIR	tube reactions of	
RATE EQUATIONS -know		PERIOD 3 AND THEIR	metal aga ions with	
how to devise a rate		OXIDES -to recall the	ammonia or conc	
expression -know how to		trends in acid base	hydrochloric	
calculate order of reaction from initial rate		nature of the oxides -	understand and draw	
data -know how to		to carry out experiments to	shapes of complex ions -understand the	
determine rate const -		support learning to	origin of cis trans	
know how to interpret		understand	isomerism in sq planar	
graphs showing orders of		amphoteric nature of	complexes -draw cis	
reaction -know how to		Al oxide	trans complexes -	
understand the mech of		7 II OXIGO	perform colorimetry	
a reaction given rate			to determine conc of	
data			coloured ion and	
			collect data for	
Kp EQUILIB CONST -be			graphreduce	
able to calc Kp from			Vanadate ion using	
partial pressures -be able			zinc -perform redox	
to calc partial pressures			titrations incl mass of	
			iron ii in an iron tablet	
			-perform	
			autocatalysis	
			reactions	
			REACTIONS OF IONS	
			IN AQ SOLUTIONS -	
			define lewis acids	
			and base -be able to	
			write equations that	
			represent ligand	
			substitution reactions	
			-carry out relevant	
			test tube reactions	

	Autumn 1/Autumn 2	Autumn 2	Autumn 2/Spring 1	Spring 2	Summer 1
Key questions	What is optical isomerism? What is a carbonyl group? How can we distinguish between different carbonyl compounds? How are aldehydes and ketones made? What chemical reactions do they do? What uses do they have? How can we calculate enthalpy changes that are hard to measure directly? What is entropy and how is it a useful concept? What is the rate equation? What is the order of a reaction? How can reaction mechanisms be linked to ideas about reaction rate? How can we apply the equilibrium law and Le Chatelier's principle to gaseous reversible	What are the chemical and physical properties of carboxylic acids and their derivatives? How are they made? What are half cells in electrochemistry? How can we predict the course of redox reactions and describe how batteries work? What is an acid? What is the difference between a strong acid and a weak acid? What is a buffer solution?	What are aromatic compounds? What makes a benzene ring so stable? What gives arenes their unexpected properties? How can we explain the reactions of amines using the fact that they have a lone pair of electrons? How are proteins made from amino acids? How does DNA contain the blueprint for living things? How are polymers made? What are the different types of polymers? What environmental issues do polymers present?	What is NMR and why is it useful? What is chromatography and why is it useful? Why do the transition metals have unique chemical properties? Why do they have multiple oxidation states? Why do they form coloured compounds? What happens to metal ions in solution? How do they react? What are ligand substitution reactions?	
Assessment	reactions? Topic Tests	Topic Tests PPE	Topic Tests	Topic Tests PPE	Topic Tests
Literacy/ Numeracy/ SMSC/ Character	Kerboodle Retrieval Questions Essay Practice Questions Exampro Past Exam Questions Seneca Learning Assessments				