

Curriculum Map

Subject: Physics

Year Group: 12

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Bridging Course: Skills	1 Particles and	3 Waves and	3 Waves and	4 Electricity	5 Further
	and Knowledge from	Radiation	Optics	Optics	(chapters 12 and	Mechanics
	GCSE, including	(continued)	i Waves (Ch 4)	(continued)	13)	Circular Motion
	maths skills (using the	(chapter 2 and 3)	Longitudinal and	ii Optics (Ch 5)	Electric current	(ch17)
	CGP Transition book	The particle zoo:	transverse waves,	Refraction of light	and charge	Uniform circular
	and Ch 14, 15 and	subatomic	polarisation, wave	Total internal	Potential	motion
	16)	particles and their	speed, phase	reflection and	difference and	Centripetal
	Key skills and	interactions	difference	optical fibres	power	acceleration
	understanding from	(hadrons and	Reflection,	Young's double	Resistance	Applications – on
	GCSE, Measurement,	leptons, baryons,	refraction and	slit experiment	Components and	the road and at
	analysis and	mesons, quarks,	diffraction.	Coherence,	their	the fairground.
	evaluation in physics,	antiparticles)	Superposition	wavelength,	characteristics	
	data handling,	The photoelectric	Stationary waves	colour, light	DC Circuits	2 Mechanics and
	trigonometry,	effect, quanta, ,	Oscilloscopes	sources, white	Circuit rules	Materials
	algebra, graphs.	ionisation energy		light fringes	EMF and internal	continued
		and the electron	2 Mechanics and	Diffraction, single	resistance	vi Materials (Ch
Content	1 Particles and	volt	Materials	slit diffraction,	Circuit	11)
Comen	Radiation (chapter 1)	Energy levels in	continued	Young's fringes,	calculations	Density
	Demonstrate	atoms – de-	lii Newton's Laws	diffraction	The potential	Hooke's Law and
	knowledge,	excitation,	(Ch 8)	gratings,	divider	springs
	understanding and	excitation,	Motion without	Types of spectra –		Deformation of
	application of:	fluorescence,	force	continuous, line	2 Mechanics and	solids – tensile
	Structure of an atom,	spectra,	Newton's first law	emission, line	Materials	stress and tensile
	isotopes, specific	Wave Particle	Weight	absorption,	continued	strain
	charge	Duality	F=ma		Work, Energy and	Stress strain curves
	The strong nuclear	De Broglie's	Terminal speed –	2 Mechanics and	Power (Ch 10)	Loading and
	force and	hypothesis	objects falling in	Materials	Work and energy	unloading of
	radioactive decay		fluids	continued	Conservation of	different materials
	Electromagnetic	2 Mechanics and	Stopping distance	lv Forces and	energy	
	waves and photons	Materials	and vehicle safety	Momentum (Ch 9)	Work, forces,	
	Particles, antiparticles	continued		Momentum and	displacement,	
	and E=mc ² .	ii) On The Move		impulse	force-distance	
	The electromagnetic	(Ch7)		Force-time graphs	graphs	
	force, Feynman			Impact forces		

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	diagrams, weak	speed and		Newton's Third	Kinetic and	
	nuclear force, beta	velocity,		Law, conservation	potential energy	
	decay and electron	displacement-		of momentum	Power and energy	
	capture.	time graphs,		Elastic and	Machines and	
		acceleration –		inelastic collisions	efficiency	
	2 Mechanics and	uniform and non-				
	Materials	uniform				
	i) Forces in	Motion along a				
	equilibrium (Ch 6)	straight line at				
	vectors and scalars,	constant				
	resolving vectors,	acceleration -				
	balanced forces,	equations				
	equilibrium of a point	Free fall,				
	object, testing three	measuring g				
	forces in equilibrium	Motion graphs				
	Moments and turning	Projectile motion				
	effects, centre of					
	mass, support forces					
	Stability – stable and					
	unstable equilibria,					
	free body diagrams					
	and the triangle of					
	forces Statics calculations					
	Ch1 Matter and	Ch2 Quarks and	Ch4 Waves	Ch5 Optics	Ch12 Electric	Ch17 Motion in a
	Radiation	Leptons	Describe an	State and use	Current	Circle
	Understand the	Understand and	experiment that	Snell's Law.	Colculate the	Recognise uniform
	structure of an atom	use properties	can distinguish	Calculate	charge flow in a	motion in a circle.
	and be able to use	such as	between	refractive index	circuit.	Define and use
	the scientific	strangeness.	transverse and	Investigate Total	Calculate electric	angular
Skills	terminology.	Classify subatomic	longitudinal	Internal Reflection	power.	momentum and
JKIIIJ	Explain why some	particles.	waves.	Describe and	Discuss when	angular speed.
	nuclei and stable and	Distinguish	Calculate the	interpret Young's	Ohm's Law can	Calculate
	some are unstable.	between different	frequency of a	Double Slit	be used.	centripetal force.
	Calculate the energy	types of neutrinos.	wave from its	Interference	Investigate the	Identify the forces
	of a photon.		period.	experiment	characteristics of	that provide the
						centripetal force

Autumn 1	Autumn 2 A	Vutumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Discuss whe	ether anti- Evalu	ate the	Demonstrate the	Identify coherent	different circuit	on a banked
atoms are	oossible. impoi	tance of	direction light	sources.	components	track.
Use Feynm	an lepto	n numbers	waves bend when	Observe		Use equations to
diagrams.		in how we	they travel out of	diffraction and	Ch13 Direct	analyse
	know	that quarks	glass and into air.	compare the	Current Rules	fairground rides.
Ch6 Forces	in exist.		Use the concept	single slit	State and use the	
Equilibrium		v knowledge	of superposition to	diffraction pattern	circuit rules to	Ch11 Materials
Resolve ve	ctors. of qu	arks to	explain wave	with the pattern of	describe what	Measure the
Explain and	d use the expla	in the quark	cancellation.	Young's fringes.	happens in a	density of different
parallelogr	am of chan	ges that	Deduce whether	Determine the	circuit.	objects
forces.	happ	en in beta	a stationary wave	grating spacing	Calculate	Investigate
Demonstra			is formed by	for any given	resistance in series	Hooke's Law
two or mor	e forces State	and use the	superposition.	diffraction grating	and parallel	Relate stress to
have no ov	rerall conse	ervation rules	Compare the	if it is not known.	circuits.	force and strain to
effect on p			frequencies of		Calculate current	extension
objects.		ictions.	higher harmonies	Ch9 Forces and	and pd for each	Analyse stress—
Apply the p			with the first	Momentum	component in a	strain curves for
moments to		Quantum	harmonic	Define the impulse	circuit.	different materials
problems.		omena	frequency.	of a force and	Measure the	Predict whether a
Calculate	0	ss how the	Be able to use	calculate impulses	internal resistance	metal wire will
of a metre	U	on model	and interpret	fro force—time	of a battery.	return to its
the princip		established.	oscilloscopes.	graphs.	Calculate currents	original length
moments.	Expla			Relate Newton''s	in circuits with	when stretched.
Solve single		nstein's	Ch8 Newton's	first and second	diodes, more than	Compare the
and double		on model	Laws of Motion	laws of motion to	one cell, resistors	deformation of
problems.		evolutionary.	Investigate	momentum.	in series, resistors in	metal wires with
Assess whe		in what	Newton's first law	Analyse impact	parallel.	other materials
objects will		ens inside an	of motion	forces in a variety	Apply	such as rubber
Solve probl	0	when it	Apply the	of contexts.	understanding of	and polythene.
free body f		mes excited.	equation F=ma to	Apply Newton's	potential dividers	
diagrams.		nergy levels	a variety of	third law of	to how they can	
Solve static		olain de-	settings	motion and the	be used in the real	
calculation		ation and	Apply ideas about	principle of	world.	
		scence.	drag forces to	conservation of		
		late the	explain terminal	momentum to	Ch10 Work,	
	wave	length of	speed	various contexts.	Energy and Power	

A	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		light for a given	Discuss the factors	Discuss elastic and	Discuss whether	
		electron transition.	that affect the	inelastic collisions.	energy ever	
		Discuss why we	overall stopping	Explain what	disappears.	
		can change the	distance of a	happens during	Calculate	
		wavelength of a	vehicle.	and after an	changes in kinetic	
		matter particle	Discuss the design	explosion.	energy and	
		but not that of a	features of cars		potential energy	
		photon.	that make them		when work is done	
			safer.		on an object.	
		Ch7 On The Move			Measure and	
		Analyse and			calculate power.	
		interpret			Calculate	
		displacement-			efficiency and	
		time graphs,			discuss whether	
		distance-time			any device can	
		graphs and			ever be 100%	
		velocity-time			efficient.	
		graphs.				
		Explain why				
		acceleration is a				
		vector.				
		Calculate the				
		displacement of				
		an object moving				
		with uniform				
		acceleration.				
		Discuss if objects				
		of different				
		masses or sizes all				
		form with the				
		same				
		acceleration.				
		Calculate the				
		motion of objects				
		with constant				
		acceleration as				

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		their velocity				
		reverses.				
		Deduce whether				
		overall motion				
		should be broken				
		down into stages.				
		Identify the				
		horizontal				
		component of a				
		vertical vector.				
		Discuss what				
		would happen if				
		we could switch				
		gravity off.				
	Ch 1 Matter &	Ch2 Quarks and	Ch4 Waves	Ch5 Optics	Ch12 and 13	Ch 17 Motion in a
	Radiation	Leptons	What are the	What are rays?	Electricity	Circle
	What is inside an	How can we	properties of	What is Snell's	What are charge	What is uniform
	atom?	make sense of the	transverse and	Law ⁵	carriers, what is	circular motion?
	What is the strong	particle zoo by	longitudinal	How can we	electric current	What are the
	nuclear force and	classifying	waves?	explain	and what is	definitions of
	what does it do?	particles and	What test can we	refraction?	potential	angular
	How are subatomic	antiparticles?	do in physics to	What is total	difference?	displacement and
	particles detected?	What are quarks	distinguish	internal refection?	How do energy	angular speed?
	What properties do	and what do they	between them?	Why do diamonds	transfers take	Why is velocity not
K	different subatomic	do;	What is meant by	sparkle?	place in electrical	constant when
Key questions	particles have?	What different	the terms phase	What is the	devices?	objects travel
	What is antimatter?	conservation rules	difference and	double slit	What is electrical	uniformly in a
	How are the weak	apply to particles	superposition?	experiment, and	resistance?	circle?
	nuclear force, and	and antiparticles?	What are the	what does it show?	When can Ohm's	Why do
	the electromagnetic force involved with	CH 3 Quantum Phenomena	conditions	What is	Law be used? What are	passengers feel
			required to form a			like they are being
	subatomic particles?	What is Einstein's	stationary wave?	coherence?	superconductors?	
	What is radioactive decay?	explanation of the photoelectric	Ch8 Newton's	What is fringing? What can we	What are the characteristics of	when a car goes round a bend
	Ch 6	effect?	Laws of Motion	learn using	different circuit	quickly?
	How do we resolve	CIICCIY		diffraction	components	How do the forces
	vectors?				Components	
			<u> </u>	gratings?		change when you

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2			
		graphs and							
		displacement-							
		time graphs?							
		How can we							
		explain the							
		difference							
		between speed-							
		time graphs and							
		velocity-time							
		graphs?							
		How can we							
		investigate							
		projectile motion?							
	Transition Exam				Transition Exam	Transition Exam			
	Topic Tests		Topic Tests	Topic Tests					
Assessment	Seneca Learning Asses	ssments	Seneca Learning	Seneca Learning					
			Assessments PPE	Assessments					
	Literacy:								
	Kerboodle Retrieval Questions								
	Isaac Physics Calculations								
	Exampro Past Exam Questions								
	Numeracy:								
	Standard form and calculations using powers of ten.								
	Significant figures								
Literacy/	Units – converting units								
Numeracy/	Changing the subject								
SMSC/	Plotting graphs from ex	kperimental data							
Character	SMSC and Character:								
	Explore the frontiers of physics								
	Gain insight into how physics is an international, collaborative discipline, and Visit CERN in Switzerland								
	Understand how science works and develops, how science embraces the possibility of being 'wrong'								
	Consider the extremely high cost of some cutting edge physics research, and debate its worth in comparison to other needs								
	society has.								
	Consider the value of scientific research that might have no immediate application								
	Consider the benefits and costs of nuclear physics, its applications and uses in medicine, electrical power, and in warfare								