

Subject: Physics

Year Group: 13

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer
	5 Further Mechanics	7 Fields	7 Fields continued	7 Nuclear Physics	8 Optional Topic
	continued	Gravitational Fields	Capacitors (ch23)	Radioactivity (ch 26)	Turning Points in
	Simple Harmonic Motion	(ch21)	Capacitance,	Discovery of nucleus,	Physics
	(Ch 18)	Gravitational Field	energy stored in a	properties of alpha,	Discovery of the
	SHM, oscillations, time	Strength,	charged capacitor,	beta and gamma	electron
	difference	Gravitational	charging and	radiation	Wave particle duality
	Circles and waves, sine	Potential	discharging a	The dangers of	Thermionic emission
	wave solutions	Newton's Law of	capacitor through	radioactivity	Matter waves
	Applications of SHM	Gravitation	fixed resistors,	Radioactive decay,	Electromagnetic
	Energy, free oscillations,	Planetary fields and	dielectrics	using radioactive	waves
	damped oscillations,	satellite motion		isotopes, decay	Different theories of
	forced vibrations,		Magnetic Fields (ch	modes, nuclear	light
	resonance	Electric Fields (ch22)	24)	radius	Photoelectricity
		Field patterns	Current-carryng		Special relativity
	6 Thermal Physics (ch19)	Electric Field Strength	conductors in	Nuclear Energy	
Content	Internal Energy and	Electric Potential	magnetic fields,	(ch27)	
	Temperature	Coulomb's Law	Moving charges in	Energy and mass	
	Specific heat capacity	Point Charges	magnetic fields	Binding Energy	
	Changes of state	Comparing Electric	Charged particles in	Fission and fusion	
	Gases (Ch 20)	and Gravitational	circular orbits	Thermonuclear	
	The Experimental Gas	Fields		reactors	
	Laws		Electromagnetic		
	Ideal Gas Law		Induction (ch25)		
	Kinetic Theory of Gases		Generating		
			electricity, the laws		
			of electromagnetic		
			induction, difernating		
			current generators,		
			anemaling current		
			unu power,		
			transformers		

Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer
Ch 18 Apply the	Ch21 Gravitational	Ch23 Capacitors	Ch26 Radioactivity	Turning Points in
definitions of amplitude,	Fields	Relate pd across the	Describe and explain	Physics
frequency and period to	Define radial and	plates of a capacitor	the experiments that	Use appropriate
examples of SHM.	uniform fields.	to the charge on its	led to the discovery	equations to
State conditions about	Illustrate a	plate.	of the nucleus.	estimate the size of
acceleration that apply	gravitational field.	Discuss uses of	Compare the	the nucleus of an
to SHM.	Calculate	capacitors.	properties of alpha,	atom from the least
Describe various phase	gravitational	Describe the form of	beta and gamma	distance of
differences.	potential difference	energy stored in a	radiation by referring	approach of an
Use the equation that	between two points.	capacitor.	to experiments.	alpha particle.
relates displacement to	Discuss whether	Interpret the shape	Explain how to	
time for bodies moving	spherical objects like	of charging and	represent the	Use measured data
with SHM.	planets can be	discharging curves.	change in a nucleus	to plot a straight line
Apply understanding of	treated as point	Explain which	when it emits alpha,	graph to verify the
SHM to various practical	masses.	components you	beta and gamma	inverse square law
examples such as the	Describe the shape	would choose to	radiation.	for gamma radiation.
pendulum.	of a graph of g	make	Discuss how exposure	
Describe how KE and	against r for points	charge/discharge	to ionising radiation	Use count rate to find
Skills GPE vary with	outside the surface	slower.	can be reduced.	the decay constant
displacement in SHM,	of a planet.	Explain how	Use the idea of half	ot a radioactive
and describe the effects	Compare the above	dielectrics attect	lite to discuss	isotope.
of damping.	graph with graphs of	capacitors.	radioactive decay.	
Distinguish between free	V against r.		Explain why	Calculate the energy
and forced vibrations.	State the conditions	Ch24 Magnetic Fields	radioactive decay is	of a gamma photon
	for satellites to be in	Determine the	a random process.	from an energy level
Chiy Demonstrate the	stable orbits.	direction of the force	Discuss various uses	alagram.
first Idw of		on a current carrying	of radioactive	
mermodynamics in		field	Isotopes.	Use given data to
action.	illustrate the strength			calculate the mass
Measure specific Heat	field lines	Measure the strength	Z CHAITS.	detect and the
Capacity.	Tield lines.	of a magnetic field.	Explain now high	binding energy per
	Describe now to		diffraction works	nucleon of a nucleus,
	of an electric field		difficition works.	chaine energy
	Evolution why potential	Apply the factors		fission overt
	is defined in terms of	that affect charged		
	the work dono por	particles in circular	E-mc ² in a variaty of	

Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer
	Autumn 2 and why it is measured in V. Calculate the electric potential difference between two points. Calculate the force between two charged objects. Use equations related to point charges. Compare the similarities and differences between electric and gravitational fields.	orbits to practical examples. Understand how cyclotrons and mass spectrometers work. Ch25 Electromagnetic Induction Investigate electromagnetic induction. Use Fleming's Right Hand Rule. Relate the induced emf in a coil to the magnetic flux linkage through it. State, explain and apply Lenz's Law. Understand how AC generators work. Calculate power supplied by an alternating current. Be able to describe and explain the energy changes in a transformer.	Use the idea of binding energy to explain why energy is released in nuclear fission. Explain, compare and contrast nuclear fission and nuclear fusion. Explain what happens inside a nuclear reactor.	Summer

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer
	Ch18 Simple Harmonic	Ch21 Gravitational	Ch23 Capacitors	Ch26 Radioactivity	How are
	Motion	Fields	What is a capacitor	How was the nucleus	experimental
	What is simple harmonic	What is meant by the	and what are they	discovered and what	methods and
	motion and how can we	strength of a	used for?	took them so long?	mathematics used in
	apply our understanding	gravitational field?	Why do capacitors	How big is a nucleus?	the determination of
	to real life situations?	How are radial fields	store energy as they	What are the	fundamental
	What are sine waves and	and uniform fields	are being charged?	properties of alpha,	physical constants?
	what can we learn from	different?	Which circuit	beta and gamma	How was the
	them?	What is gravitational	components would	radiation?	electron discovered
	What is the theory of the	potential?	you choose to make	What are the	and how were its
	simple pendulum?	How can we use	charge/discharge	dangers of radiation?	properties
	How are tree oscillations	potential gradients?	happen more slowly?	What is meant by the	determined?
	different to damped	What is Kepler's Third	How do dielectrics	activity of a	How have ideas
	oscillations?	Laws	affect capacitors?	radioactive isotope?	about wave-particle
	what are the	What is Newton's	ChO4 Margin atta Fields	What is half life?	audility developed
	circumstances in which	Universal Law of	Ch24 Magnetic Fields	Does anything affect	over me years?
	resonance occurse		How can you		what is de Broglie's
	Ch19 Thormal Physics	what is the	of a magnetic field?	what practical uses	hypoinesise
Key questions	What is internal onergy?	significance of the	What factors do the	adiagativa isatapas?	now do election
	What is the first law of	gradieni or me v—i	magnitude of a force	What can we tall	What is Einstein's
	thermodynamics?	What happens to the	on a current-carrying	about radioactive	Theory of Special
	What is absolute zero?	speed of a satellite if	wire depend on?	isotopes from N—7	Relativity?
	What do we mean when	it moves closer to	What happens to	charts?	What experimental
	we talk about heating up	Farth?	charged particles in	Are more massive	evidence is there to
	and cooling down?		a magnetic field?	nuclei wider?	support Finstein's
	Why does the	Ch22 Electric Fields	How do charaed		theory?
	temperature of a	How can we charge	particles in circular	Ch27 Nuclear Energy	How have all these
	substance stay constant	a metal object?	orbits behave?	What can the	ideas helped with
	when it is changing	How can we illustrate		equation E=mc ² tell	the development of
	state?	the strength of an	Ch25	US ²	new technology?
	What is latent heat?	electric field using	Electromagnetic	What is binding	
		field lines?	Induction	energy?	
		How can we	Describe what must	Why is energy	
		measure the strength	happen to a	released in nuclear	
		of an electric field?	conductor for	fission?	
		Why is potential	electricity to be		
		defined in terms of	generated.		

	Autumn 1/Autumn 2	Autumn 2	Spring 1	Spring 2	Summer
		work done per unit of positive charge? How does the force between two point charges change with distance? Why is E equal to zero inside a charged sphere? What are the main similarities and differences between electric and gravitational fields?	How is the induced emf in a coil related to the magnetic flux linkage? How do Alternating Current generators work? What is alternating current? What is the purpose of a transformer?	How do nuclear fission and nuclear fusion happen? What goes on inside a nuclear reactor?	
Assessment	Topic Tests Seneca Learning Assessments	Topic Tests Seneca Learning Assessments PPF	Topic Tests Seneca Learning Assessments	Topic Tests Seneca Learning Assessments PPF	Topic Tests Seneca Learning Assessments
Literacy/ Numeracy/ SMSC/ Character	PPE PPE Kerboodle Retrieval Questions Isaac Physics Calculations Isaac Physics Calculations Exampro Past Exam Questions SMSC and Character: Explore the frontiers of physics Gain insight into how physics is an international, collaborative discipline. Understand how science works and develops, how science embraces the possibility of being 'wrong' Develop an appreciation of the history of 20 th Century Physics and the enormous changes it brought to our understanding of light, matter and the universe. Consider the extremely high cost of some cutting edge physics research, and debate its worth in comparison to other needs society has. Consider the benefits and costs of nuclear physics, its applications and uses in medicine, electrical power, and in warfare Develop research and synthesis skills in the Optional Topic.				